Quantum contributions in the ice phases: the path to a new empirical model for water-TIP4PQ/2005.
نویسندگان
چکیده
With a view to a better understanding of the influence of atomic quantum delocalization effects on the phase behavior of water, path integral simulations have been undertaken for almost all of the known ice phases using the TIP4P/2005 model in conjunction with the rigid rotor propagator proposed by Muser and Berne [Phys. Rev. Lett. 77, 2638 (1996)]. The quantum contributions then being known, a new empirical model of water is developed (TIP4PQ/2005) which reproduces, to a good degree, a number of the physical properties of the ice phases, for example, densities, structure, and relative stabilities.
منابع مشابه
Can gas hydrate structures be described using classical simulations?
Quantum path-integral simulations of the hydrate solid structures have been performed using the recently proposed TIP4PQ/2005 model. By also performing classical simulations using this model, the impact of the nuclear quantum effects on the hydrates is highlighted; nuclear quantum effects significantly modify the structure, densities, and energies of the hydrates, leading to the conclusion that...
متن کاملRsc_cp_c2cp40962c 1..7
The phase diagram of water has been calculated from the TIP4PQ/2005 model, an empirical rigid non-polarisable model. The path integral Monte Carlo technique was used, permitting the incorporation of nuclear quantum effects. The coexistence lines were traced out using the Gibbs–Duhem integration method, once having calculated the free energies of the liquid and solid phases in the quantum limit,...
متن کاملQuantum effects on the maximum in density of water as described by the TIP4PQ/2005 model.
Path integral simulations have been performed to determine the temperature of the maximum in density of water of the rigid, nonpolarizable TIP4PQ/2005 model treating long range Coulombic forces with the reaction field method. A maximum in density is found at 280 K, just 3 K above the experimental value. In tritiated water the maximum occurs at a temperature about 12 K higher than in water, in r...
متن کاملThe phase diagram of water from quantum simulations.
The phase diagram of water has been calculated from the TIP4PQ/2005 model, an empirical rigid non-polarisable model. The path integral Monte Carlo technique was used, permitting the incorporation of nuclear quantum effects. The coexistence lines were traced out using the Gibbs-Duhem integration method, once having calculated the free energies of the liquid and solid phases in the quantum limit,...
متن کاملNuclear quantum effects in water clusters: the role of the molecular flexibility.
With the objective of establishing the importance of water flexibility in empirical models which explicitly include nuclear quantum effects, we have carried out path integral Monte Carlo simulations in water clusters with up to seven molecules. Two recently developed models have been used for comparison: the rigid TIP4PQ/2005 and the flexible q-TIP4P/F models, both inspired by the rigid TIP4P/2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 131 2 شماره
صفحات -
تاریخ انتشار 2009